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Abstract. A regular method for finding solutions of the equation for the depth distribution of 
momentum deposited by atomic panicles in elastic collisions is developed, using the model of 
am infinite medium and power cross section. It is shown that in neglecting thrrshold energy the 
distribution has a specific singularity at the target surface; its physical origin and the respective 
asymptotes are investigated. The calculated distributions and other functions connected with the 
problem are given. 

1. Introduction 

The present paper is devoted to a new investigation of the known problem of finding the 
deposited-momentum depth distributions for interaction between ions and amorphous or 
polycrystalline targets in the linear cascade model [I, 2, 31. This function is of primary 
interest for damage cascade theory, especially because of the well-known applications to 
sputtering and recoil impIantation [I, 2, 3, 41. 

The following circumstances require a new analysis of this problem. The theoretical 
description of momentum deposition is based on integro-differential equations of the same 
kind as for the deposited-energy distribution, and leads to the problem of reconstructing a 
function to be found from its spatial moments. It has been pointed out [2] that this problem 
appears to be more difficult for momentum deposition, because the corresponding profile 
is not a positive-definite function, and traditional methods do not demonstrate appropriate 
convergence. Definite progress was achieved by using the Pad6 approximants method [5] ,  
which seemed to give reasonable results [Z]; but critical analysis of these results shows that 
some important features of the solution were not clear in this approach either. 

First, it can be readily shown immediately from the kinetic equation for the deposited- 
momentum depth profile that if we neglect threshold energy [61 this function has a specific 
singularity at the target surface. This is an important qualitative feature of the deposited- 
momentum distribution and cannot be ignored when building the profile to be found &om 
the spatial moments; moreover, the correct description of the behaviour of the function in the 
target surface region is especially necessary because of the sputtering theory applications. 

Second, we are going to show, furthermore, tbat threshold energy effects (which are 
usually assumed to be reasonably negligible in semi-analytical investigations) need to be 
taken into account for correct calculation of some important functions of the problem- 
in particular, for finding the value of the distribution at the target surface. From the 
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mathematical point of view, this situation arises because in general the threshold energy 
correction to the distribution is not of the same order as the one to the spatial moments, 
and in some cases appears to be governing or comparable with the respective values in the 
W = 0 model. On the other hand, on introducing threshold energy into the kinetic equation 
one can obtain interesting analytical and numerical results in this direction. 

The solution of the kinetic equation taking into account the factors itemized above can 
be obtained by using a modification of the regular method developed in [7] for finding the 
deposited-energy profiles. This method is based upon calculating the spatial moments with 
high accuracy, immediate tabulation of the Taylor series for the Fourier transform of the 
distribution and the subsequent continuation of the latter in accordance with analytically 
established asymptotic expressions. 

Let us adopt a relatively simple model of the phenomenon: an infinite isotropic random 
medium, neglect of electronic energy losses, and a power cross section of elastic collisions. 
For simplicity, we discuss only the case of equal masses of an ion and a target atom. 

The evaluation in the present paper is given only for the component of momentum 
normal to the target surface (P,(x, E, 0) in the notation of [Z]); it is the most interesting 
function, because it is not positive-definite and it is assumed to determine anisotropic 
corrections to the sputtering yield [l,  3, 81 in the sputtering theory. Correspondingly results 
for other components can be obtained by the same method. 

In the present paper we are going to discuss only solutions neglecting threshold energy. 
In this model, the deposited-momentum distribution reduces to the momentum per unit 
depth of cascade particles after the energy dissipation has proceeded to essentially the zero- 
energy level, determined as an average over many slowing-down events. The evaluation 
in the W # 0 case requires a knowledge of the W = 0 results and requires a specific 
mathematical techique. The W # 0 corrections will be considered in a future paper. 

2. Equations governing momentum deposition 

If we neglect threshold energy and electronic stopping, the kinetic equation for the deposited- 
momentum depth distribution P(z, E, e) in an infinite medium is [Z]: 

s (1) 
a 
az -q-P(z, E, e )  = N do [P(z, E, e) - P(z, E - T ,  e’) - P(z, T, e”)] 

where P(z, E, e) dz is an average momentum deposited in the interval (z, z + dz) during 
the development of the cascade caused by one projectile, z is the coordinate along the 
inner normal to the target surface, and z = 0 at the surface; E is the initial energy of 
a projectile; e, e’, e” are the unit vectors in the directions of the starting, scattered and 
recoiling particle velocities respectively; T is the energy transfer in an elastic collision; do  
is the corresponding differential cross section: 7) is the direction cosine of e with respect to 
the z-axis; and N is the density of the target atoms. 

From momentum conservation, we have also the normalization condition 
m 

[ _ P ( z ,  E ,  e) dz =Mu (2) 

where M v  is the initial momentum of the projectile. 
In the case of the power cross section [9,6, 31 

du(E, T )  = CE-mT-’-m dT 0 < m < 1 (3) 
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the function to be found satisfies a simple scaling low, and can be represented in the form: 
1 

P z ( z z , E , e ) =  - ( 2 M ) 1 / Z N C E 1 / 2 - 2 m F ( ~ ,  3 q )  (4) 

where x = z N C /  
polynomials 

and F is a dimensionless function. Expanding F in terms of Legendre 

m 

F(x ,  v) = z(21+ l ) f ? ( v ) f i ( x )  (5) 

one can obtain by the usual method 161 the system of integro-differential equations for the 
functions f i ( x )  (F-I = 0): 

1 4  

d 
dx --[&-1(x) + (1 + 1)FI+l (X) l  

and the normalization conditions: 
m 

Fi(X) 6( = 81,. (7) s_, 
The functions Fl with odd and even 1 are symmetric and antisymmetric respectively. 

Introducing the spatial moments 

one can easily obtain from equations (6) the following recurrence relations: 

n[lF/-:' + ( I  + l)F&'J ''~= (21 + 1)4(2mn + 1/2) 
where 

(9) 

and'can be expressed in terms of the beta function [6,7]. The formulae (9) make it possible 
to calculate the moments of the distribution to be found with a rb i t rq  necessary accuracy, 
using the normalization conditions (7) as starting values for the recurrence procedure. 

Let us introduce also the Fourier transforms f(k, q ) ,  fi(k): 

The functions fi(k) satisfy to the system of equations 

-Wlf-i (k) + ( I  + I)fi+~(k)l 

= (21 + I) l ' t - ' -m dt [f(k) - f i ( G ) ( l  - t)1'2fi(k(l - t)*"') 

(10) 

which can be readily derived from (6). The functions' fu+L are real and symmetric functions 
of k, while the fu are imaginary and antisymmetric. 
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Knowing F" one can tabulate the Fourier transform of the deposited-momentum 
distribution in accordance with the Taylor expansion of the latter: 

m 
f(k, q) = ~(-ikY'F"(q)/n! 

n=O 

Analogous formulae arise for the functions fi(k). 

3. The asymptotic behaviour of the functions for the cases IC + CO and 

By calculating the moments and tabulating the series (ll), one can obtain f ( k ,  q) up to 
some value k = ko depending on the adopted accuracy of calculating the moments. Then 
one has to make the correct continuation of the Fourier transform in the region k > ko. 
The function f ( k ,  q) very slowly decreases when k -+ CO, because F ( x ,  q) at least is not 
differentiable at x = 0. The latter can be verified directly from the equations (6). Hence it 
is necessary to investigate the asymptotes o f  the functions at k -+ CO and x -+ 0 for the 
correct continuation of the Fourier transform in the region k > ko and an understanding of 
the characteristic features of the behaviour of F ( x ,  q) near the target surface. 

-+ 0 

3.1. The x -+ 0 asymptotes 

When x + 0, the last term on the right-hand side of (6) appears to be the leading one. Let 
us examine the case I = 0, x + +0: 

Let us assume that F&) is finite nearthe point x = 0. Then the last integral appears finite 
when x + +Oat least f o r m  > 1/6, and the leading term of the asymptote reads as follows: 

x-3/2+1/(4m) 
dx 

and, consequently, 

m #  ll2 (12) constant + constant x x - ' / ~ + ' / ( ~ )  + . . . 
constant x Inx +constant + . . . m = 1 / 2  FiW - [ 

and symmetrically for x + -0. Thus, the derivative of FI(x) appears infinite when 
x -+ fO, and the function Fl(x)  itself has the logarithmic and power singularity at x = 0 
for m = 1/2 and m > 1/2 respectively. The presence of the singularity can also be 
demonstrated directly from equation (6) by integrating over x from 0 to CO. Thus gives 

I 
Fl(0) im Fo(x) dx 1 f-'+" dt (1  - (1 - t)l/' - tilz I . 

The last integral diverges for m 2 1/2. 
In the case 1 = 1, x + fO we obtain from (6): 

The functions F, with even I are antisymmetric, Fz(0) = 0, so the leading terms of the 
asymptotic expansion are as follows: 

(13) 
constant x x1/(zm)-1/2 + . . . m z 113 

Fo(x) 2Fz(x) - I constant x x lnx + constant x x + . . . m = 1/3 
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and antisymmetrically for x + -0. 
The formulae (12). (13) can easily be extended to all functions with odd and even 1 

respectively. Thus, the symmetric functions Fu+, have the above specified singularity at 
the target surface: for m 2 1/3 the antisymmetric functions Fu have infinite derivatives at 
x = o .  

3.2. The k + 00 asymptotes and the method of numerical evaluation 

The k + 00 asymptotes can be found from (IO) in a similar way (see also the analogous 
evaluation in [7]). The corresponding results are as follows: 

1 

(14) 
constant x 1kI-Z odd 1, k + izco 

1 1  3 1  I sgn(k)[constant x 1kl-T-G +constant x lkl-y-z;;] even I ,  k + fca;  
- 

The function f(k. q) can be divided into real and imaginary parts: 

f (k .  a) = fs(k II) +ifA(k. a) 
fs(k q) = fs(-k, 17) = -fs& -11) 
The functions fs and fA determine the symmetric and antisymmetric (on x )  parts of F ( x ,  q): 

fA(k, 'I) =~-fA(-k. q) = fA(k, -q). 

F ( x ,  q) FS(x. 11) + FA(x* 7) (15) 

The functions Fs, fs and FA, fA include the terms with odd and even 1 respectively in the 
Legendre polynomials expansion, and their x + 0 and k + cc,asymptotes are determined 
by formulae like (12), (13), (14). 

The following procedure was used for numerically tabulating the solutions of the kinetic 
equation in the present paper. The moments of the dishibution were calculated according 
to the recurrence formulae (9) with high accuracy (usually the moments were found up to 
n = 300 with 28-decimal-digits precision) to reach as high values of k as is possible by 
directly summing the series (11). Then the function f(k, q) was tabulated using the formula 
(1 1) up to some value k = ko, where the series can be calculated with sufficient accuracy 
(usually ko was taken to be equal to 30 for m = l/2 and 12 for m = 1/3). Further, the 
Fourier transform was continued in the region k > ko separately for the real and imaginary 
parts of f(k.  q) by determining constants in $e asymptotic formulae from the condition of 
best coincidence near the point k = b; the final result was obtained via the formulae (15), 
(16). The same method can also be used for tabulating the functions Fr if necessary. 

4. Results and discussion 

Figures l(a) and l (b)  demonstrate the characteristic behaviour of the Fourier transforms 
Re f and Im f. The Fourier transforms are shown up to k = !q used for the tabulation. In 
accordance with the asymptotic expressions given above, the functions are characterized by 
very slow decrease for large k. 

The zeroth and first angular harmonics of the dis@ibution for m = 1/2 are shown in 
figure 2. The function F1 has a logarithmic singularity at x = 0; the derivative of FO is 
infinite at the target surface. 

Analogous behaviour is demonstrated by the symmetric and antisymmetric parts of the 
function, which are shown in figures 3(u) and 3(b) for q = 1. For large enough negative x 
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2 - I \  

Figure 1. Dependencies of the real (a) and imaginruy (b) pwts of the Fourier transform f (k ,  0) 
on k; m = 112; = I (I), 7 = 0.6 (2). 7 = 0.4 (3). 

they compensate each other with good precision, providing small values of F ( x ,  q). Taking 
into account the independence of finding asymptotes for their Fourier transforms, this is an 
additional confirmation of the good accuracy of the results obtained. 

Figure 4 demonstrates the functions F ( x ,  q)  for normal and tangential incidence of 
an ion for m = 112. The model of an infinite medium is not appropriate for q = 0; 
however, the results are of definite interest from the mathematical point of view, because in 
this case FS disappears and the solution is characterized by a behaviour that is typical for 
antisymmetric functions of the problem. Furthermore, F ( x ,  q = 0) can be considered as 
the deposited-momentum distribution in the perpendicular direction for normal incidence. 

Figures 5(a) and (b)  show the profiles F ( x ,  q) for different values of q. According 
to the general asymptotic features discussed above, the distributions for m = 1/2 have a 
logarithmic singularity at the target surface; the solutions for in = 113 have an infinite 
derivative at x = k0, which changes sign at the surface. 

Let us discuss the particular behaviour of the deposited-momentum distribution 
PZ(z, E, e) and its physical origin. 

The function P,(z, E ,  e) is not positive-definite. Momentum deposited inside the target 
( z  > 0) must point in the positive z-direction at large penetration depths. Analogously, the 
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-6J 

Figure 2. Dependencies F d x )  form = 112; 1 = O(1) and 1 = l(2). 

recoils, which reach large depths outside the target (z < 0), have predominantly negative z- 
components of momenta and provide negative values of the distribution. The last statement 
is definitely confirmed by the present calculations, in contrast with results from the formal 
Pad6 approximants &hod [Z]. 

For direction cosines of a projectile, that are not too small the deposited-momentum 
distribution readily reaches a minimum at z =' 0 and has relatively high negative values 
near the target surface. The presence of the minimum near z = 0 was indicated also by 
the earlier calculations [Z], which nevertheless did not demonstrate the following particular 
features: 

(i) the minimum is located exactly at the target surface, since the spatial derivative 

(ii) the function is not~smooth at the target surface, its derivative appears to be infinite 

(iii) the function itself is infinite at z = 0 form 2 1/2. 

These characteristic features were established above in the formal mathematical manner. 
Now we are going to consider the physical origin of the rapidly reached minimum at the 
target surface and the qualitative features itemized above. 

From the physical point of view, the rapidly reached minimum of the distribution 
is created by contributions of the sub-cascades initiated by atoms, which are caused to 
recoile by the projectile in the target surface region, the effect being determined mainly 
by relatively low-energy recoils. In fact, we show below that the primary recoils, starting, 
say, from z = ZO, lead to comparatively very large negative and positive contributions to 
the distribution in some narrow regions on the left and on the right of z = 20 respectively. 
The positive contribution at z > zo appears to be effectively compensated by the negative 
parts of the contributions of sub-cascades caused by atoms, which are caused to recoile by a 
projectile at larger penetration depths, but the negative conhibutions of sub-cascades caused 
by primary recoils starting from some narrow target surface region have no compensation 
and create the rapidly reached minimum at z = 0. 

Let us consider a more quantitative estimation of this effect for the special case of 

abruptly changes sign at z = 0; 

a tz=r tO;  
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I 2 

Figure 3. Symmetric ( I )  and antisymmeuic (2) p m  of F(x ,  11 = I);  m = 112 (a) and m = 113 
(b). 

normal incidence of a projectile (7 = 1). First, we introduce the quantity 

where the transferred energy T is the recoil energy. The central role of UA(E)  in estimations 
of this kind is shown by the following: Np(E)u*(E)  6z is the average sum of absolute 
values of momentums of recoils created by a projectile of mass M, energy E and momentum 
p ( E )  = (2ME)1 /2  in travelling a distance Sz. For the power cross-section (3) and cross- 
sections with similar T I E  < 1 asymptotes, the quantity UA(E)  is significantly larger than, 
say, the momentum transfer cross-section 

u d E )  = [l - (e. e’)(l - T / E ) 1 / 2 ]  du = ( T / E )  do(& T) J lE 
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Figure 4. Dependencies F(x.  q)  for tangential and normal incidence; m = 112; q = 0 (1). 
q = 1 (2). 

which is dominatzd by the contribution of relatively low-energy recoils, whose velocities 
are approximately perpendicular to the direction of motion of a projectile. 

To estimate the effect of sub-cascades initiated by primary recoils created in the target 
surface region, we adopt for a moment the following simple model: 

(i) we neglect energy losses and the scattering of a projectile; 
(ii) taking into account the leading role of low-energy primary recoils, we assume that 

the primary recoils start perpendicularly to the direction of motion of a projectile, i.e., in 
the q = 1 case, their direction cosine q" = 0. 

Then, any recoil of energy T starting from a point z = zo provides on average 
the contribution P,(z - zo, T, q = 0) into the distribution. For m = 1/2, the function 
Pz(z, E ,  q = 0) in dimensionless units is shown in figure 4. In general, the antisymmetric 
function Pz(z. E ,  q = 0) is predominantly negative and positive for z < 0 and z z 0 
respectively. The maximum and the minimum of P,(z, E ,  q = 0) are located at IzI = 
a E k / N C ,  and the integrals 

0 

P2(z, E,  = 0) dz = - P,(z, E ,  ?I = 0) dz = @ ( E )  L- 1, 
where the coefficients a 5 1/10 and j3 - :/3 depend relatively slightly on m. Here, for 
simplicity, we  use a simple approximation for P,(z, E,  q = 0): 

where O ( x )  = 1 for x > 0 bnd e(x )  = 0 for x c 0, y ( E )  = j 3 N C p ( E ) / b E k  being 
chosen to conserve correct values of the integrals 

b 
Pdz, E ,  I? = 0) dz. 

Using more realistic approximations for P,(z, E ,  = 0), we would obtain qualitatively the 
same results, with slight corrections in coefficients in the final expressions for the z --f 0 
asymptotes. 
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Figwe 5. Dependencies F(x.  ‘I) on x form = 112 (a) and m = 113 (b); ‘I = 0.4 (I) ,  IJ = 0.6 
(2). IJ = 0.8 (3). r) = 1 (4). 

In the adopted model, in travelling a distance (zo, a+dzo) a projectile creates on average 

primary recoils of energy (T, T+dT). They initiate sub-cascades which give a contribution 

into the deposited momentum-distribution. The positive part (at z > zg) of this contribution 
is compensated by the negative part of the respective contribution of recoils created in the 
interval (20 + 2aT” f N C ,  zo + 2aT” f N C  + dzo). So, integrating over zo and the recoil 
energy T, we find the following estimate for the deposited-momentum distribution near the 
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target surface: 

This integral can easily be calculated analytically and indicates the same leading z + 0 
asymptotic terms for the symmetric part of the distribution as in section 3; all qualitative 
features itemized above are demonstrated also; and using appropriate values of (Y and p ,  
one finds estimates for the effective width and other characteristics of the rapidly reached 
minimum at z = 0, that appear to be in a reasonable agreement with the numerical tabulation 
results. 

We consider in more detail the corresponding estimation for the deposited-momentum 
distribution at z = 0 

Thus, IP,(z, E ,  q = 1)1 is approximately equal, apart from a trivial factor, to the average 
sum of absolute values of momenta of recoils created by a projectile per unit path length. 
The larger m, the greater the ratio UA(E)/U~(E), because of the increasing contribution of 
low-energy primary recoils, and this provides a rapid growth of the relative altitude of the 
minimum at z = 0. The quantity uA(E) becomes infinite for m > 1/2, leading to an infinite 
value of the distribution at the target surface, in agreement with the results of section 3. 

An analogous evaluation can be done as well for q # 1, although it is more complicated 
because an additional integration over direction cosines of primary recoils appears to be 
necessary. The physical origin of the rapidly reached minimum at the target surface 
is qualitatively the same, apart from an angular dependence: primary recoils created at 
z = zo initiate sub-cascades, which give large (approximately proportional to the summized 
absolute values of recoils momenta) positive and negative contributions to Pi(z, E ,  e) in 
narrow regions on the right and on the left of z = zo respectively; the absence of an 
effective compensation of the negative parts of these contributions for recoils created at small 
penetration depths produces the rapidly reached minimum at the target surface. The effect 
mainly arises because the average absolute value of primary recoil momentum is significantly 
larger than the corresponding component in the direction of motion of a projectile, due to the 
rapidity with which the maximum of the power cross-section (3) is approached as TIE  + 0. 
So, qualitatively the same particular behaviour of the distribution as is found near the target 
surface is also found for more complicated cross-sections, if their T I E  << 1 asymptotes are 
similar to those given by (3). 

It is necessary to make some comments on the threshold energy effects here. The 
simplest way to take these effects into account is introducing the boundary condition [6] 

P(z ,  E, e) = M v S ( z )  E 4 W 
with corresponding changes in the kinetic equation. Appropriate corrections to the spatia1 
moments can be found by using the Robinson Laplace transformation method [lo] and for 
m > 1/4 these are - (W/E)"-''2. The larger m, the smaller these corrections; but the 
corresponding corrections to the values of the distribution in the target surface region (and, 



10658 L G Glazov 

in particular, to P(z = 0, E ,  e), which is important for the theory of sputtering) change 
in an opposite way, such that for m > l j 2  no finite result for this region can be obtained 
while neglecting threshold energy. Of course, these corrections can hardly be neglected for 
slightly smaller values of in. The analytical and numerical evaluation for the latter case is 
now in progress and will be presented in a future paper. 
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